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Abstract

Middle censoring refers to data that becomes unobservable if it falls within a random interval.
The lifetime distribution of such data is de4ned via the self-consistency equation. We propose an
approximation to this distribution function for which an estimator and its asymptotic properties
are very easy to establish.
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1. Introduction

1.1. Middle censoring

Our aim in this paper is the estimation of the lifetime distribution or its comple-
ment, the survival distribution, for middle-censored data. Middle censoring occurs when
a data point becomes unobservable if it falls inside a random interval. This is a gen-
eralization of left and right censored data and is quite distinct from the case of doubly
censored data.
In situations where data is not subject to any censoring it is natural to use the empir-

ical distribution function (EDF) to estimate the lifetime distribution of the population.
If the data is subject to censoring, the EDF is unavailable and modi4cations have to
be made to the EDF to estimate the lifetime distribution. In such a case, the lifetime
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distribution is constructed based on the available information, that is, the lifetimes of
the individuals that do not fall in the censoring interval as well as the censoring infor-
mation. This reconstruction is done using the self consistency equation (see eg. Tarpey
and Flury (1996)) and forms the basis for de4ning self consistent estimators (SCE) in
place of the unavailable EDF, to estimate lifetimes.
In case of right censored data, the well-known product limit estimator due to Kaplan

and Meir (1958) is used and similar estimates exist for the left censored case. Gehan
(1965), Turnbull (1974) and others consider doubly censored data (where both left
and right censoring can occur simultaneously), while Groeneboom and Wellner (1992)
and Geskus and Groeneboom (1996) study the case of interval censored data. Non-
parametric maximum likelihood estimators (NPMLE) and SCE have been obtained
for the above cases and these coincide under certain conditions. Tsai and Crowley
(1985) have shown that many of these cases can be uni4ed by a generalized maximum
likelihood principle. It is pointed out in that paper that solving for a self consistent
estimator is akin to applying the EM algorithm. The idea of middle censoring was
introduced and an NPMLE obtained for such data, by Jammalamadaka and Mangalam
(2003), hereafter referred to as JM. This paper also illustrates via concrete real data
situations where middle censoring is applicable. JM showed that the NPMLE is a SCE,
but consistency was proved for the SCE under the rather stringent condition that one
of the ends of the censoring intervals is a constant.

1.2. Censoring and self consistency

In case of censored data one typically looks at an estimator that satis4es a self
consistency equation. Often it is not possible to obtain a closed form solution for this
equation and hence the estimator has to be computed using iterative methods as is done
in JM. Further, it is proved there that under certain conditions this estimator converges
to the solution of an equation which is the lifetime distribution of the population. We
look at this problem in a slightly diGerent way and address the practical diHculties
that arise in the use of SCE. We suggest a simpler alternative estimator which is not
recursive and for which not only consistency but weak convergence can be established.
Suppose, the lifetimes denoted by X follow an unknown distribution F0, and our goal

is to estimate this F0. Corresponding to every individual in the population there is a
censoring interval distributed as the random interval (L; R), independent of the lifetime,
with unknown bivariate distribution G. During the time period (L; R) no observation
is possible. That is, for any individual with lifetime X , let � := I [X �∈ (L; R]]. If
� = 1 then we can observe X , else we can observe only the censored interval (L; R)
corresponding to this individual. Thus some information regarding lifetimes is missing
in the sample. So we reconstruct this information based on the uncensored lifetimes
and the self consistency equation.
Let Z represent the observable, i.e.,

Z =

{
X if X �∈ (L; R) (i:e: �= 1);

(L; R] otherwise:
(1.1)
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De4ne P and Q, subdistributions on R and R2, respectively, as

P(t) = P(X 6 t; �= 1);

Q(l; r) = P(L6 l; R6 r; �= 0): (1.2)

P is the lifetime distribution of the uncensored observation and Q governs the distri-
bution of censoring intervals of the censored observations. Note that Q is concentrated
on the region l6 r. We shall make the assumption that both P and Q are continuous.

The population lifetime distribution is de4ned via the solution of the self consistency
equation (see JM)

F(t) = P(t) +
∫

F(t ∧ r) − F(t ∧ l)
F(r) − F(l)

dQ(l; r): (1.3)

In order to understand why the lifetime distribution should satisfy this equation, let us
rewrite (1.3) as follows:

F(t) = P(t) +
∫
l6r6t

dQ(l; r) +
∫
l¡t¡r

F(t) − F(l)
F(r) − F(l)

dQ(l; r);

= P(t) + Q(t; t) +
∫
l¡t¡r

F(t) − F(l)
F(r) − F(l)

dQ(l; r): (1.4)

The 4rst two terms represent the uncensored individuals who have lifetimes less than t
and the censored individuals for whom the censoring interval lies in (−∞; t]. What is
not available at time t is the information regarding the lifetimes of censored individuals
whose censoring interval contains t. This is given by the third term where the integrand
is the conditional probability of the lifetime taking values in (l; t) given that it is in
(l; r). Thus it makes sense to de4ne the lifetime distribution according to (1.3). Note
that F0 satis4es (1.3). Once the population lifetime distribution is speci4ed, it is easy
to de4ne SCE.
Given data {Zi; i = 1; : : : ; n}, we de4ne the empirical versions of P;Q and F as

Pn(t) =
1
n

n∑
i=1

I(Xi6 t; �i = 1);

Qn(l; r) =
1
n

n∑
i=1

I(Li6 l; Ri6 r; �i = 0); (1.5)

Fn(t) = Pn(t) +
∫

Fn(t ∧ r) − Fn(t ∧ l)
Fn(r) − Fn(l)

dQn(l; r): (1.6)

Since (1.6) does not have a closed form solution, the SCE must be computed using
iterative methods.
The identi8ability condition. Consistency of estimators in case of censored data is

usually proved under the so called identi4ability condition. Let A(t) = P(L¡ t¡R).
For any a6 b for which A(t) is identically 1 on [a; b], F0(b) = F0(a). If censoring
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occurs on an interval with probability 1, then it is impossible to estimate F0 consistently
in that interval.

Remark. The main diHculty in establishing the consistency of the SCE lies in show-
ing that there is a unique solution to (1.3) given P and Q. JM (see Section 3) prove
consistency under the rather restrictive condition that one of the end points of the cen-
soring interval is a constant. The question of weak convergence is even more daunting
(see eg. Chang (1990a, b) in double-censoring context) for our original estimator. As
it happens in other areas of statistics, when a problem is very diHcult to solve, we
take easier ways out by considering alternative procedures with comparable eHciency.
Our alternate estimator is oGered in that spirit.

2. Approximate self consistency and main results

In order to get around the diHculties mentioned above, we propose a modi4cation to
the SCE of the lifetime distribution proposed in (1.6). If one examines the distribution
given by (1.4) or, more simply, if not so precisely (1.6), what is happening is that
the mass of the censored data is being reallocated to the uncensored observations in a
meaningful (self consistent) way.
The question we ask is whether we can make this reallocation in a simple yet

reasonable way so that the problems of computing the estimator and the asymptotics
for the estimator becomes straightforward. To this end we de4ne an approximately
self-consistent lifetime distribution based on P and Q. This is obtained by modifying
(1.4) by

F1(t) := P(t) + Q(t; t) +
∫
l¡t¡r

P(t) − P(l)
P(r) − P(l)

dQ(l; r): (2.1)

What this does is to reallocate the unexplained mass 1− P(∞) to the uncensored ob-
servations. This is done by assuming that a censored individual with censoring interval
(L; R) will have a lifetime that is equally likely to be one of the uncensored lifetimes
to fall in (L; R). Note that under the identi4ability condition F1 is a proper distribution
function.
A natural estimator for the above distribution would be

F1
n (t) := Pn(t) + Qn(t; t) +

∫
l¡t¡r

Pn(t) − Pn(l)
Pn(r) − Pn(l)

dQn(l; r): (2.2)

Remark. The integrand in (2.2) is taken to be zero if for any t ∈ (Li; Ri] for which
�i = 0, and the interval (Li; Ri] does not contain any uncensored observation. For all
such intervals, F1

n puts mass 1=n at t = Ri. This will accrue due to the second term
that will have a jump of size 1=n at t = Ri.

Remark. The above estimator can be easily extended to the case of left and right
censored data. This is the case when the Q(‘; r) puts positive mass at ‘ = 0, and
r = ∞. The only modi4cation one needs to make in the above estimator is to cover
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cases when an observation that is right censored, and the censoring interval does not
contain any uncensored observations. In this case, we add a term �n(t) to F1

n (t), where
�n puts mass 1=n on all Li for which Ri =∞ and �i = 0 and the interval (Li;∞) does
not contain any uncensored observation.

�n(t)=
1
n

n∑
i=1

I(Li6 t; Ri=∞; �i=0; Xj �∈ (Li;∞) ∀j �j=1; j=1; : : : ; n): (2.3)

Observe that under the identi4ability condition �n will converge to zero a.s. uniformly
in t by the Glivenko–Cantelli lemma. Thus, the asymptotic results given below will
remain unaltered in the presence of right and left censoring.

2.1. Main results

Suppose the identi4ability condition given in Section 1.2 is satis4ed and the func-
tions P and Q in (2.1) are continuous. Then the results of this section establish the
consistency and weak convergence of our estimator.

Theorem 2.1 (Consistency). As n → ∞, F1
n converges a.s. to F1 uniformly in t.

To begin with, we note that Pn and Qn will converge to P and Q uniformly as a
consequence of the Glivenko–Cantelli Lemma. The following lemma will be used in
the proof of Theorem 2.1.

Lemma 2.2. If {�n} is a sequence of functions on R2 which converge uniformly to
a bounded continuous �, then∫

�n(l; r) dQn(l; r) →
∫

�(l; r) dQ(l; r):

Proof. The result follows from the following set of inequalities:∣∣∣∣
∫

�n(l; r) dQn(l; r) −
∫

�(l; r) dQ(l; r)
∣∣∣∣

6
∣∣∣∣
∫
(�n(l; r)−�(l; r)) dQn(l; r)

∣∣∣∣+
∣∣∣∣
∫

�(l; r) dQn(l; r)−
∫

�(l; r) dQ(l; r)
∣∣∣∣

6 ‖�n − �‖
∫

d|Qn| +
∣∣∣∣
∫

�(l; r) dQn(l; r) −
∫

�(l; r) dQ(l; r)
∣∣∣∣ ; (2.4)

where ‖ · ‖ represents the supremum norm. The 4rst term in (2.4) converges to zero
since �n converges uniformly to � and

∫
d|Qn|=1. The second term converges to zero

on account of the weak convergence of Qn to Q and � being a bounded continuous
function.

Proof of Theorem 2.1. The proof follows immediately by noting the following facts.
Pn and Qn converge a.s. to P and Q, respectively (Glivenko–Cantelli Lemma). The
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third term in (2.2) converges to the corresponding term in (2.1) by an application of
Lemma 2.2 and the a.s. convergence of Pn and Qn to P and Q, respectively. This
completes the proof of Theorem 2.1.

Theorem 2.3 (Weak convergence). As n → ∞, the random process Yn(t) :=
√
n(F1

n (t)−
F1(t)) converges weakly to a Gaussian process Y which satis8es

Y (t) =W (t) + Z(t; t) +
∫
l¡t¡r

P(t) − P(l)
P(r) − P(l)

dZ(l; r)+
∫
l¡t¡r

×
[
P(t)[W (l)−W (r)]+P(r)[W (t)−W (l)] + P(l)[W (r)−W (t)]

(P(r)−P(l))2

]
dQ(l; r);

(2.5)

where W (t) is a mean zero Gaussian process with covariance function speci8ed by
E{W (s)W (t)}=P(s)(A−P(t)) for 06 s¡ t, where A=P(+∞), and Z is a mean zero
Gaussian process with covariance E{Z(s; t)Z(l; r)}=Q(s; t)(B−Q(l; r)) for 06 s¡ t
and 06 l¡ r, where B=Q(∞;∞)=P[X ∈ (L; R)], and the integral is understood to
be in the Ito sense.

Proof. Note that

√
n(F1

n (t) − F1(t))

=
√
n(Pn(t) − P(t)) +

√
n(Qn(t; t) − Q(t; t))

+
√
n

(∫
Pn(t) − Pn(l)
Pn(r) − Pn(l)

dQn(l; r) −
∫

P(t) − P(l)
P(r) − P(l)

dQ(l; r)
)
: (2.6)

In the above equation and in what follows, the double integrals are over the region
0¡l¡t¡r. Recall (see Theorem 14.3, Billingsley, 1999) that the 4rst term above√
n(Pn(t)−P(t)) converges weakly to the process W . A trivial extension of the above

result to the multivariate case will imply that
√
n(Qn(l; r) − Q(l; r)) will converge

weakly to the process Z . Note that Pn and Qn are assumed to be independent. We now
analyze the last term in (2.6):

√
n

(∫
Pn(t) − Pn(l)
Pn(r) − Pn(l)

dQn(l; r) −
∫

P(t) − P(l)
P(r) − P(l)

dQ(l; r)
)

=
√
n

∫ (
Pn(t) − Pn(l)
Pn(r) − Pn(l)

− P(t) − P(l)
P(r) − P(l)

)
dQ(l; r)

+
∫

Pn(t) − Pn(l)
Pn(r) − Pn(l)

d
√
n(Qn(l; r) − Q(l; r)): (2.7)
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The integrand in the 4rst term can be written as

√
n

[
[Pn(t)P(r)−P(t)Pn(r)] + [P(t)Pn(l)−Pn(t)P(l)] + [P(l)Pn(r)−Pn(l)P(r)]

(Pn(r)−Pn(l))(P(r)−P(l))

]
:

(2.8)

The denominator converges almost surely to (P(r)− P(l))2 uniformly in r and l. The
4rst term in the numerator converges to W (t)P(r) − W (r)P(t). In fact

√
n[Pn(t)P(r) − P(t)Pn(r)] =

√
n[(Pn(t) − P(t))P(r) − (Pn(r) − P(r))P(t)]

→W (t)P(r) − W (r)P(t):

The last expression following from the fact that since
√
n(Pn(t)−P(t)) converges to the

process W in the Skorohod space, the 4nite-dimensional distributions also converge.
The other two terms in the numerator in (2.8) can be analyzed similarly. Putting
together and simplifying, the 4rst term in (2.7) is seen to converge to∫

P(t)[W (l) − W (r)] + P(r)[W (t) − W (l)] + P(l)[W (r) − W (t)]
(P(r) − P(l))2

dQ(l; r):

(2.9)

Note that in the above we have used the fact that the integrand converges in the
Skorohod space and the integral is a continuous functional. This is on account of the
fact that the integrand in (2.9) is a process with continuous paths and this implies that
the convergence of the integrand in the 4rst term of (2.7) to it is in fact uniform (see
Billingsley, 1999, pp. 150).
Using integration by parts the second term on the right in (2.7), can be rewritten as∫ √

n(Qn(l; r) − Q(l; r)) d
(
Pn(t) − Pn(l)
Pn(r) − Pn(l)

)
:

Using the weak convergence of the process
√
n(Qn − Q) to the continuous Gaussian

process Z , and the Lemma in Billingsley (1999, pp. 151), we conclude that the second
term on the right in (2.7) converges to∫

Z(l; r) d
(
P(t) − P(l)
P(r) − P(l)

)
=

∫
P(t) − P(l)
P(r) − P(l)

dZ(l; r);

where the last equality follows by integration by parts formula.
This completes the proof of Theorem 2.3.

Since the estimator F1
n converges to F1 and not to the actual lifetime distribution

F0, it is important to know how far is F1 from the actual F0. The following theorem
addresses this question:
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Theorem 2.4 (How close is F1 to F0?).

(a)

‖F0(t) − F1(t)‖6 sup
0¡t¡∞

[Q(t;∞) − Q(t; t)]; (2.10)
(b)

‖F0(t) − F1(t)‖6 sup
0¡t¡∞

∫
l¡t¡r

max(g(l; t; r); h(l; t; r)) d|Q|(l; r); (2.11)

where

g(l; t; r) =
Q(t;∞) − Q(l; l)

P(r) − P(l)
(2.12)

and

h(l; t; r) =
(P(t) − P(l))(Q(r;∞) − Q(l; l))

(P(r) − P(l))2
: (2.13)

Remark. The bound in (a) above is easy to calculate while the one in (b) is tighter.
Both the bounds can be estimated from the data by replacing P and Q by their empirical
counterparts. To evaluate the supremum, we need to calculate the quantities appearing
in the bounds only at the data points.

Proof of Theorem 2.4. Let

I(t) =
∫
u¡t¡v

F(t) − F(u)
F(v) − F(u)

dQ(u; v)

and note that

I(t)6
∫
u¡t¡v

d|Q|(u; v) = Q(t;∞) − Q(t; t): (2.14)

From (1.4), (2.1) we get

|F(t) − F1(t)|6
∫
l¡t¡r

∣∣∣∣
[
F(t) − F(l)
F(r) − F(l)

− P(t) − P(l)
P(r) − P(l)

]∣∣∣∣ d|Q|(l; r): (2.15)

The integrand in (2.15) being a diGerence of two conditional probabilities is bounded
by 1. This together with (2.14) gives (2.10).
From (1.3), (1.4), for any a¡b,

[F(b) − F(a)] − [P(b) − P(a)] = [Q(b; b) + I(b)] − [Q(a; a) + I(a)]

=
∫

[F(b ∧ r) − F(b ∧ l)] − [F(a ∧ r) − F(a ∧ l)]
F(r) − F(l)

dQ(l; r)¿ 0; (2.16)

since the integrand on the right is always non-negative.
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From (1.4) and (2.16), for any l¡ t¡r,

F(t) − F(l)
F(r) − F(l)

=
P(t) − P(l) + Q(t; t) + I(t) − Q(l; l) − I(l)

F(r) − F(l)
(2.17)

6
P(t) − P(l)
P(r) − P(l)

+
Q(t; t) + I(t) − Q(l; l) − I(l)

P(r) − P(l)
: (2.18)

Therefore,

F(t) − F(l)
F(r) − F(l)

− P(t) − P(l)
P(r) − P(l)

6
[Q(t; t) + I(t)] − Q(l; l)

P(r) − P(l)
: (2.19)

Using (2.14), we get

F(t) − F(l)
F(r) − F(l)

− P(t) − P(l)
P(r) − P(l)

6
Q(t;∞) − Q(l; l)

P(r) − P(l)
: (2.20)

To get the inequality in the other direction, observe that

P(t) − P(l)
P(r) − P(l)

=
(F(t) − F(l)) − [Q(t; t) − Q(l; l) + I(t) − I(l)]
(F(r) − F(l)) − [Q(r; r) − Q(l; l) + I(r) − I(l)]

6
F(t) − F(l)

(F(r) − F(l)) − [Q(r; r) − Q(l; l) + I(r) − I(l)]

6
(F(t) − F(l))=(F(r) − F(l))

1 − (Q(r; r) − Q(l; l) + I(r) − I(l))=(F(r) − F(l))
; (2.21)

where to get the 4rst inequality above, we use (2.16). Simplifying the above equation,
we get

P(t) − P(l)
P(r) − P(l)

− F(t) − F(l)
F(r) − F(l)

6
[
P(t) − P(l)
P(r) − P(l)

] [
Q(r; r) − Q(l; l) + I(r) − I(l)

F(r) − F(l)

]

6
(P(t) − P(l))(Q(r;∞) − Q(l; l))

(P(r) − P(l))2
: (2.22)

This completes the proof of Theorem 2.4.

F0(t) − F1(t) =
∫
l¡t¡r

[
F0(t) − F0(l)
F0(r) − F0(l)

− P(t) − P(l)
P(r) − P(l)

]
dQ(l; r): (2.23)

For any given value of B, it can be seen from (2.23) that the discrepancy between
F0 and F1 will be more over intervals that are heavily censored and also contain a
lot of uncensored observations, and it grows with increasing B. Further, the diGerence
between the two will persist for a longer duration as the censoring intervals become
wider (see remark below). Thus, the approximation we propose will be best in situations
where the censoring is light (overall and over areas which contain a lot of uncensored
lifetimes) and when the length of the censoring intervals are small relative to the range
of most of the lifetimes.
We consider the two examples from JM and compare their SCE with our estimator.
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Example 1. Here n= 5 and the observations are z1 = 2, z2 = 4, z3 = 6, z4 = (1; 5) and
z5 = (3; 7). The non-parametric MLE (NPMLE) puts mass (5−√

5)=10 each on z1 and
z3 and a mass of 1=

√
5 on z2.

To derive the estimator F1
n we 4rst put mass 1=5 on each of the uncensored obser-

vations. The censored observation (1; 5) contains the observations z1 and z2, so that
each gets an additional mass of 1=10. The interval (3; 7) contains z2 and z3 and so we
give a mass of 1=10 to each one of them. Thus, F1

n assigns a mass of 3=10 to z1 and
z3, and the remaining mass of 2=5 to z2. The supremum norm distance between the
two estimators is (

√
5 − 2)=10.

Example 2. Let n = 4 and the data be 1; 2; (3; 6) and (4; 7). A SCE for this data is
given as having mass 0.25 on 1; 2; 4:5; 5:5. The NPMLE is given as having mass 0.25
on 1 and 2, and a mass of 0.5 on some point in the overlap region (4; 6) of the two
censored intervals.

The approximate SCE will have a mass of 0.25 on 1; 2; 6; 7.

Remark 1. Suppose that the censoring distribution Q is discrete, i.e. it puts all its mass
on a countable number of intervals (li; ri); i=1; 2; : : : ; and these intervals are disjoint.
Then, it can be easily seen that

‖F − F1‖6max
i

[(P(ri) − P(li)) + (Q(ri; ri) − Q(li; li)]

= max
i

[F(ri) − F(li)]: (2.24)

In fact F(x) = F1(x) for all x = li; ri, i = 1; : : : : As F and F1 are non-decreasing,
the result follows.

Remark 2. The approximation we propose and the results can be extended to more
complex situations like spatially censored data with random censoring sets. This is
being investigated and will be the content of a future work.

3. Computational results

A simulation study was performed to compare the performance of the ASCE with
the SCE. Lifetime distributions were taken to be exponential, Erlang and Weibull. Cen-
soring was aGected by random intervals with left end points and interval width being
independent exponential random variables. The results are summarized in Tables 1–3.
Let F0; E; Fn; F1

n denote the true lifetime distribution, the empirical distribution, the
SCE and the ASCE, respectively. The 4rst column gives the parameters for generating
the censoring intervals and the second for the lifetimes. The third column gives the per-
centage of observations that were censored. Sample size in all experiments was taken
to be 100. The fourth column compares the ASCE with the SCE, while the subsequent
ones compare the empirical and the ASCE with the actual distribution F0, respectively,
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Table 1

Cen. par. Lif. par. % Cen. ‖Fn − F1
n‖ ‖F0 − E‖ ‖F0 − F1

n‖
0:2; 0:2 0.1 20 0.0045 0.1072 0.1594
0:02; 0:02 0.01 18 0.0027 0.0727 0.0630
0:02; 0:02 0.05 16 0.0067 0.1252 0.1539
0:05; 0:05 0.05 24 0.0043 0.064 0.0820
0:1; 0:01 0.05 51 0.0604 0.0682 0.1352

Table 2

Cen. par. Lif. par. % Cen. ‖Fn − F1
n‖ ‖F0 − E‖ ‖F0 − F1

n‖
0:1; 0:1 2; 1 13 0.0026 0.0562 0.0573
0:1; 0:1 5; 1 21 0.0038 0.0485 0.0596
0:1; 0:01 5; 1 36 0.0308 0.0821 0.1420

Table 3

Cen. par. Lif. par. % Cen. ‖Fn − F1
n‖ ‖F0 − E‖ ‖F0 − F1

n‖
0:1; 0:1 5; 2 34 0.0063 0.0931 0.1312
0:1; 0:01 10; 2 57 0.1349 0.0544 0.1051

comparisons being in terms of the sup norm distance. Lifetime distributions are taken
to be exponential, Gamma and Weibull, respectively in Tables 1–3. It can be seen
that the ASCE is very close to the SCE. Twenty iterations were used to compute the
SCE. The censoring percentage is seen to vary between 16% and over 50%. Still the
ASCE is seen to perform well in comparison with the EDF (which in practice would
be unknown).
Finally, we consider an actual data set on melanoma survival collected at Odense

University Hospital, Denmark (see Anderson et al. (1993)). The sample contains 205
data points, ranging from 10 to 5565. The data were censored by random intervals of
the form (L; L+W ), where L and W are independent exponential random variables with
means 2000 and 1000, respectively. This resulted in roughly 18% of the observations
being censored. The supremum norm distance between the EDF and the ASCE was
only 0.0199. This is quite remarkable given that 18% of the data is censored.

4. Conclusion

We propose and study the performance of a simple alternative estimator for lifetime
distribution for middle-censored data. The main advantages of this simpler estimator
are that it is not recursive, and consistency and weak convergence can be established.
We verify through simulations that it performs in practice as well as the SCE proposed
in Jammalamadaka and Mangalam (2003).
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